
Detecting breast cancer metastases

Marc Ducret

March 2019

1 Problem setting

This project aims at building a classifier that can detected breast cancer metastases for a given
patient. A patient is represented by a set of tiles Si = {t1.. .tni

} (1 ≤ ni ≤ 1000). Those tiles
represent some small portion of tissue. Each tile can individually contain metastases. We will
consider that a patient has metastases when one of their tiles does.

1.1 Tile representations

We will consider three representations of those tiles :

• Colored images of size 224× 224× 3

• ImageNet embeddings via ResNet50 of size 2048

• PCA representation of those embeddings of size 64

The last two representations seem sub optimal because those images are very specific and
not like anything included in ImageNet. Also some ResNet features might be totally irrelevant
to our problem. Since the images are quite similar to one another there are good reasons to
think that PCA could help removing those unnecessary dimensions to reduce overfitting and
computation time.

On the other hand, we can expect to extract more information from images but they have a
much higher dimension which as we will see later, leads to some problems of time and memory.

1.2 Labels and objective

Some patients are fully annotated as each of their tiles has a label describing whether or not
this tile contains metastases. For the rest of patients, only if the set of tiles contains metastases
is known.

The objective is the ROC-AUC on patient predictions. This metric evaluates the ranking of
predictions, it is maximal when all positive samples have a greater prediction than all negative
samples.

2 General approach

I choose to focus on end-to-end architectures that take as input a stacked array of tiles. Such
a model should output a global prediction and a local prediction per tile. This way, losses for
both types of labels (global and local) can be used.

1



Since tiles are an unordered set, the architecture should respect this symmetry. Therefore a
module of those architectures is the local model. This local model maps one tile to a prediction.
Then the global model maps local predictions and eventually tiles to a global prediction. Since
such a model can be trained end-to-end, the global loss can also help learning the local model,
which should help since only few patients are annotated.

The prediction pi associated to the set of tiles Si can be computed using a global model G,
a local model L and their parameters θ:

pi,j = Lθ(tj)

pi = Gθ ((tj , pi,j)j≤ni
)

Let P the set of patients, A the set of fully annotated patients1, Ll a loss on local predictions
and Lg a loss on global predictions. We optimize θ according to both losses, scaled with a factor
β:

arg min
θ

∑
i∈P

Li(θ)

Li(θ) = Lg(pi, yi) + β 1A(i)

ni∑
j=1

Ll(pi,j , yi,j)

3 Losses

Probabilities will be represented by their logits: log p
1−p . The natural loss for binary classifica-

tion is binary cross entropy. Let Lce(p, y) the binary cross entropy of logit p with respect to
label y.

3.1 Local loss

Tile labels are extremely unbalanced as less than 1% of annotated examples are positive. More-
over, all negative patients tiles are negative. In this case, the loss must be weighted to correctly
learn.

Ll(p, y) = wyLce(p, y)

where2 wy = 2#{i∈A|yi=y}
#A

This is the only local loss that was experimented with.

3.2 Global loss

The objective is the ranking of predictions. Cross entropy optimizes the accuracy and experi-
ments showed that accuracy was not a good predictor of ROC-AUC.

With i+ a positive patient and i− a negative patient we can define a ranking loss:

Lrk(pi+ , pi−) = Lce(pi+ − pi− , 1)

1negative patients are considered fully annotated with negative tiles
2wy = 1 in the balanced case

2



Such a loss is invariant to translation of predictions, therefore, we should keep some stan-
dard cross entropy for predictions to learn this translation. To use this loss, patient must be
considered in pairs. The new training objective is:

arg min
θ

∑
i+∈P+

∑
i−∈P−

Li+,i−(θ)

with P− and P+ the respective sets of positive and negative patients

Li+,i−(θ) = Lg(pi+ , pi−) + β
∑

s∈{+,−}

1A(is)

nis∑
j=1

Ll(pis,j , yis,j)

Then we can define the global loss:

Lg(pi+ , pi−) = Lrk(pi+ , pi−) + γ
∑

s∈{+,−}

Lce(ps, s)

with γ ∈ R

4 Models

4.1 Local models

Local models mostly depend on the type of tile representation used:

• With images, some convolutional neural network should be used. However in this ap-
proach, a batch contains at least 2×1000 tiles. Even with the smallest reasonable network,
this did not fit in the GPU3. Therefore, images were not studied in this approach.

• With ResNet or PCA features, a linear layer or a multi layer perceptron is used. One of
the reasons to use PCA and reduce dimension, is to use a multi layer perceptron without
having too many parameters4.

4.2 Global models

4.2.1 Average

Ga,b((tj , pi,j)j≤ni) =
a

ni

ni∑
j=1

pi,j + b

with a, b ∈ R parameters

4.2.2 Top-k

Let σ ∈ Snj
such that pi,σ1

≥ pi,σ2
≥ . . . ≥ pi,σni

Ga,b((tj , pi,j)j≤ni
) =

k∑
j=1

ajpi,σj
+ b

with a ∈ Rk and b ∈ R parameters
The idea behind this model is that negative tiles are not relevant to the prediction. Moreover,

it can learn different weights for each of the top-k predictions based on their ranking.

3A GTX 1080 Ti with 11 Go of memory
4The first layer would have 2048 × u parameters for u units if ResNet features are used

3



Method Validation Public Test Private Test
Average 0.79 0.77 −
Top-5 0.84 0.78 −

Attention 0.86 0.80 0.97

Table 1: ROC-AUC of different models after hyper-parameter tunning

4.2.3 Attention

Let Mθ a model that maps tiles to a logit prediction.

αj =
epi,j∑ni

k=1 e
pi,k

Gθ((tj , pi,j)j≤ni
) = Mθ(

ni∑
j=1

αjtj)

This model is only adapted to ResNet features and PCA since averaging of images is not
desired.

5 Validation

Robust validation is necessary to select models and hyper-parameters. However, with few
samples and a global metric5 it is not an easy task.

Evaluation must be done on predictions concerning samples that were not seen during train-
ing. However, both a small training set and a small validation set lead to high variability in
results. Rough validation can be obtain by training on 80% of the data and evaluating on the
20% remaining (55 samples). Different splits lead to very different scores.

A more stable approach is to make predictions on the whole training set using k-fold. Each
fold splits the dataset: most is used to train the model and predictions are computed on the
remaining patients. After training k models we have a prediction for each sample. Then
ROC-AUC can be computed on those predictions. This second approach is more robust but is
slow to compute.

6 Results

Table 1 shows scores of different models using ResNet features. The Average model uses a
multi layer peceptron as local model while Top-5 and Attention use a linear model. Those local
models are those that performed the best in those settings, hyper parameters such as learning
rate, training epochs and weight decay were also tunned.

While there is significant variation between validation, public and private scores, the ordering
seems to be the same. However, the private result of the Attention approach is very high
compared to validation and public scores. While I wanted to experiment with other approaches
such as CNN trained only on fully annotated patients and PCA with more than 64 dimensions,
there would be no way to ensure that the private score is increased.

5Accuracy can be computed on each sample independently and then averaged but ROC-AUC cannot

4



Patient 001 Patient 002

Figure 1: Color variations between patients

7 Further directions

Given a new way to evaluate models, here are some ideas to improve the model.

7.1 Tile normalisation

From a tile set to another, there are significant changes of color as seen in Figure 1. I believe
this has more to do with the process of making the images than with the patient. A natural
direction is to apply some normalisation to each set of tiles to remove this ambiguity. For
instance, we could compute the means and standard deviations of colors over each set of tiles
and normalize images this way. However, the white color is the same across all sets and should
remain this way. Hence for this normalisation, only the non blank pixels should be considered.

7.2 Training a CNN

There are not many examples of positive tiles6. However, it seems that those examples could
be easily augmented by adding rotations, flips and some noise. Training with positive-negative
pairs could reduce the issues of class balance. Since images are rather simple, the network would
not require too many parameters.

6only 707

5


