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Abstract

Learning the policy that maximizes reward in an envi-
ronment can be done without learning from reward but by
cloning the behavior of an expert. This report presents algo-
rithms (BC, DAgger, DART) that exploit this idea and com-
pares them on the Mujoco FetchPickAndPlace environment.

1. Introduction
The policy that maximizes reward in an environment can

be learnt without learning from reward (i.e. without doing
reinforcement learning) but by cloning the behavior of an
expert (e.g. a human) that already knows the optimal policy.

In this report, we present (section 2) three algorithms
(BC, DAgger, DART) that exploit this idea and compares
them (section 3) on the Mujoco FetchPickAndPlace envi-
ronment.

2. Behavioral cloning algorithms
Behavioral cloning is possible if we have access to

some behavior. Usually, this access is made through
trajectories, i.e. sequences of observations and actions
(o1, a1), ..., (oT , aT ) where at is the action taken by the
behavior when it receives the observation ot and ot+1 the
observation sent by the environment after receiving action
at. Trajectories collected from the behavior of an expert are
called demonstrations.

2.1. Vanilla Behavioral Cloning (aka BC)

Vanilla behavioral cloning consists in collecting demon-
strations d1, ..., dN and learning to map the observations in
the demonstrations to the optimal actions given by the ex-
pert. This can be done with deep learning for example.

Issue. In practice, an agent trained with BC tends to per-
form well (meaning it takes the optimal actions) on expert’s
trajectories, but worst on its own trajectories (what really
matters). This gap in performance, called covariate shift,
is due to error accumulation (figure 1): each error made by
the agent deviates it more from expert’s trajectory and leads

it to places where it is less familiar and more likely to do
bigger errors and deviate even more.

Figure 1. Error accumulation in BC

2.2. DAgger

The DAgger algorithm (introduced in [2]) aims at reduc-
ing covariate shift. It doesn’t train the agent on expert’s
trajectories but rather on its own trajectories corrected by
the expert (figure 2), i.e. on its own trajectories where its
actions had been replaced by expert’s actions.

A coefficient βt (that varies over time) is introduced to
find a trade-off between the percentage of agent’s corrected
trajectories and expert’s trajectories in the training dataset.
The more the agent learns, the less expert’s trajectories there
are.

Figure 2. DAgger

Notations. π∗ designates the expert policy.

Issue. This algorithm is on-policy meaning that the expert
corrects agent’s actions. This can be tedious for a human
expert.
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Algorithm 1: DAgger

1 D := ∅ ;
2 Initialize classifier π̂1 ;
3 for i← 1 to N do
4 πi := βiπ

∗ + (1− βi)π̂i ;
5 Sample T-step trajectories γ1, ..., γK using πi ;
6 D := D ∪ {(s, π∗(s)) : s state in γ1, ..., γK} ;
7 Train classifier π̂i+1 on D ;

8 return best π̂i on validation ;

2.3. DART

The DART algorithm (introduced in [1]) is off-policy, as
BC, but is robust. It adds noise Σt (that varies over time)
to expert’s trajectories to anticipate agent’s errors (figure 3).
The more the agent learns, the less error is added.

Figure 3. DART

Algorithm 2: DART
Input: ψ1

1 D := ∅ ;
2 Initialize classifier π̂ ;
3 for i← 1 to N do
4 Sample T-step trajectories γ1, ..., γK using π∗

ψi
;

5 D := D ∪ {(s, π∗(s)) : s state in γ1, ..., γK} ;
6 Train classifier π̂ on D ;
7 Compute ψi+1 ;

8 return π̂ ;

3. Comparison of the algorithms
3.1. The Mujoco FetchPickAndPlace environment

All the algorithms had been compared on the Fetch-
PickAndPlace environment (figure 4) of Mujoco where the
robot has to pick a cube and bring it to some 3D point (rep-
resented by the red ball).

Observations are images of dimensions 4 × 224 × 244
where each pixel is of dimension 4: 3 dimensions for color
(RGB) and 1 for depth.

Actions are of dimensions 4: 3 for describing the veloc-
ity of the arm, 1 for describing the velocity of the gripper.

The reward is -1 until the task is achieved.

Figure 4. FetchPickAndPlace environment of Mujoco

3.2. Experiments

Difficulties. We encountered several difficulties in order
to run experiments:

• We failed at installing MuJoCo on Google Cloud li-
cense what led us to use Marc’s Windows machine.

• But, the provided code and mujoco-py were not com-
patible with Windows and required some complicated
bug-fixing.

• We had a lot of trouble to adapt the provided code:
the provided code was not suited for DAgger and
DART that require to add trajectories in the trajecto-
ries dataset during training and it was hard for us to
understand exactly what we had to modify and where.

Modification of the original code. By just adapting the
provided code, we got mediocre results (figure 5).

Hence, we had to consequently modify the provided
code.

First, we avoided storing trajectories on the disk and
dealing with compression by implementing an online ver-
sion. In this implementation, trajectories are sampled in
batches of 32 while the previous 32 trajectories are being
used for training. Training is faster because there is no
costly compression and file writing / reading. Moreover it
can easily use many trajectories and since every trajectory
is only used once, there should be no overfitting. Finally, it
was much simpler to implement DAgger and DART in this
setting.

Secondly, to make DAgger and DART working correctly,
we made a different expert. The provided expert plans all
its actions in advance and will therefore not correct errors.
Our expert does not use any memory and only chooses its
actions based on the current observation, it will therefore
react to any error introduced by DAgger or DART.
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Figure 5. By just adapting the provided code, BC performed better
than DART and DAgger.

Experiments setting. All parameters shared between al-
gorithms remained constant during experiments. For each
algorithm, we sampled slightly less than 200, 000 episodes
which was about 12 hours of training.

• DAgger used βt = 0.9995t with t being the trajectory
batch number (β starts at 1 and ends at 0.05).

• DART used α = 3 as suggested by [1] (α is the noise
factor).

Figure 6. Evaluation success rate

Results. Figure 6 shows success rate at different stages of
training for each algorithm. Success rate is computed by
averaging on 500 unseen trajectories. The horizontal axis
is the number of seen episodes. Figure 7 shows the maxi-
mum values in Figure 6. In both figures errors are twice the

BC DAgger DART
80%± 4% 96%± 2% 78%± 4%

Figure 7. Best evaluation success rate

standard deviation of the average of 500 Bernoulli random
variables with p being the observed success rate.

Results analysis. In our experiments, DAgger signifi-
cantly increased performance, getting a lot closer to expert
performance of 99.7%. DART performed like BC but better
results might be possible by tuning α.

In this setting, BC is already rather good at learning be-
cause most states can be an initial state, therefore the phe-
nomenon of getting to unexplored territory when accumu-
lating errors is less relevant than in other settings.
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